HOXD9 promotes epithelial–mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma

نویسندگان

  • Xiupeng Lv
  • Linlin Li
  • Li Lv
  • Xiaotong Qu
  • Shi Jin
  • Kejun Li
  • Xiaoqin Deng
  • Lei Cheng
  • Hui He
  • Lei Dong
چکیده

Hepatocellular carcinoma (HCC) is a common malignant tumor that severely threatens human health. The poor prognosis of HCC is mainly attributed to intrahepatic and extrahepatic metastases. HOXD9 proteins belong to a superfamily that regulates the development and control of many cellular processes, including proliferation, apoptosis, cell shape, and cell migration. HOXD9 can also function as an oncogene in several cancer cells. However, its biological function in human HCC requires further investigation. In this study, HOXD9 exhibited high expression in invasive HCC cells. HOXD9 overexpression can significantly enhance HCC cell migration, invasion, and metastasis, whereas silencing HOXD9 inhibits these processes. HOXD9 also promotes the epithelial-mesenchymal transition (EMT) of HCC cells. Microarray analysis suggests that ZEB1 can function as a downstream factor of HOXD9. HOXD9 can interact with the promoter region of ZEB1 and promotes ZEB1 expression. ZEB1 knockdown inhibits HOXD9-induced migration and invasion, as well as EMT in HCC cells. This study helps elucidates the oncogenic functions of HOXD9 in HCC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

MYC associated zinc finger protein promotes the invasion and metastasis of hepatocellular carcinoma by inducing epithelial mesenchymal transition

MYC associated zinc finger protein (MAZ) plays a key role in regulation of gene expression and tumor development. Studies have shown that deregulated expression of MAZ is closely related to the progression of tumors such as glioblastoma, breast cancer, prostate cancer and liposarcoma. However, the role of MAZ in hepatocellular carcinoma (HCC) has not been fully elucidated. Here, we found that e...

متن کامل

LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway

Highly upregulated in liver cancer (HULC), a lncRNA that is considered a key molecule in human liver cancer, has recently been revealed to be involved in hepatocellular carcinoma (HCC) development and progression [1, 2]. It has been reported that HULC can promote tumor invasion and metastasis of HCC, but its function and mechanism of action in HCC have not been elucidated. In this study, we fou...

متن کامل

HINT2 downregulation promotes colorectal carcinoma migration and metastasis

Histidine triad nucleotide-binding 2 (HINT2), a member of the histidine triad proteins family, sensitizes cells to apoptosis in hepatocellular carcinoma. Here, we showed that HINT2 expression is lower in primary colorectal cancer (CRC) and metastasis tissues than in normal colorectal tissues, and that HINT2 abundance is inversely correlated with CRC tumor stage. Treating CRC cells with 5-aza-2'...

متن کامل

HIF-1α Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer

It is well recognized that hypoxia-inducible factor 1 alpha (HIF-1α) is involved in cancer metastasis, chemotherapy and poor prognosis. We previously found that deferoxamine, a hypoxia-mimetic agent, induces epithelial-mesenchymal transition (EMT) in colorectal cancer. Therefore, here we explored a new molecular mechanism for HIF-1α contributing to EMT and cancer metastasis through binding to Z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015